
sqequal com12,41

Hereare the essentials:
1. For any two terms a and b, we intend ’a ∼ b’ to be a type (in U{1})
2. For any term a, ’a ∼ a’
3. For two terms a and b, ’a ∼ b’ if b computes to a (normal

direct computation)
4. For any of the following types T, and two terms a, b in T, we

have ’a = b in T => a ∼ b’
a. int
b. Atom
c. any equality type (such as Unit)

5. Two terms ’opid1{params1}(a1, . . . , an)’ and ’opid2{params2}(b1, . . . , bn)’
are squiggle equal if opid1 and opid2 are the same,
params1 and params2 are the same, the arity of the terms is
the same, and ’a1 ∼ b1’, . . . , ’an ∼ bn’
-- This rule is not strictly necessary, given the substitution
rule, and the reflexive rule, but it is pretty useful in any case.

6. Substitution: if ’T[a]’ is a hypothesis or conclusion in a
sequent, and ’a ∼ b’, then ’T[a]’ can be replaced by ’T[b]’
(and there is no need to prove functionality).

We don’t have a rule for proving when two squiggle types are equal, so
we can’t use the squiggle type as a hypothesis. If we had one, the
rulewould be something like this:

’a ∼ b = c ∼ d in U1’
if ’a ∼ b <=> c ∼ d’ and all free variables in a, b, c, and d belong to
”canonical” types (T is a canonical type if
’all a, b: T. a = b in T => a ∼ b’).

http://www.nuprl.org/FDLcontent/p0 942988 /p15 3425 {sqequal com}.html

1


